FORMA MUNDI

The shape and size of mathematics

General solutions are seldom found. This figure shows the harmony of mathematics in the simplest geometrical relationships, displaying the basic functions of addition, subtraction, multiplication, division, natural, rational, and irrational numbers, potency, roots, inverse, trigonometry, Phytagoras theorem, Newton's binomial, Last Fermat, Goldbach, quadratic equation and some other relations... but some of this figures are just fingers pointing to the moon

They were interesting when things were solved with compass and squares and in this time of computers, they are not so impressive, but I am certain that the Samos' island sage and Sir Isaac, would have liked them

Work in progress

Green line (with slight " s " shape) is tangent of $1 / 3$ of the big sector área por each X value ($X=0.6$ in this case).
Red line ($0.0,0.58$) - ($0.7,0.274$), is the graphic eye adjusted approximation of green real "s shape" solution, and you must avoid the stepped curve at the end, and solves the two sectors.

Width of the pencil approximation with line
($0.7071,0.184$) to $(1,0)$
máximun diference of 93.5%

Work in progress

The "Shape" and "Size" approach that underlies Forma Mundis supports this solution.

$$
\begin{gathered}
X^{n}+Y^{n}=(\text { Fer } X)^{n}, \\
\text { Fer }=\text { Solution } \\
X^{n}+Y^{n}=\text { Fer }^{n} X^{n} \\
\left(X^{n}+Y^{n}\right) / X^{n}=\text { Fer }^{n} \\
1+(Y / X)^{n}=\text { Fer }^{n} \\
\text { Fer }=\left(1+\text { tan }^{n}\right)^{1 / n}
\end{gathered}
$$

for $\mathrm{X}=\mathrm{Y}, \operatorname{tan=1}$ and $\mathrm{n}=3$
Fer $=2^{1 / 3}=1.259921049 \ldots$
And for $X=4, Y=3, \tan =.75, n=3$
Fer $=\left(1+(3 / 4)^{3}\right)^{1 / 3}=1.1244853613 \ldots$
This solution resembles the classical examples to determine irrationality, with roots of not perfect potencies.
abc Conjecture can be simplified but is not so clean cut as this Fermat.

- Maybe Diophantus with his stick drawings on the sand, considered an step by step method, diminishing Y and increasing X values gradually until $\mathrm{Y}=0$ and $\mathrm{X}=\mathrm{Z}$, and discovered an almost linear interpolation for $\mathrm{n}>2$, to get to an approximate Z value avoiding potencies. If, $\mathrm{n}=3$; and $\mathrm{X}=0.8$; ($0.8-0.7071) /(1-0.7071)=0.31717$ $Z=0.89089+(1-0.89089) \times 0.31717 ; \quad Z=0.92549$;

$$
X=72, Y=54 ; X^{3}+Y^{3}=530,712
$$

(99.69% of real $0.92831 \ldots$ - gets better with larger n) taking the integer part; 83 ; so, \mathbf{Z} is between 83 and 84 or Newton binomial and fraction potencies: $\left(1+\tan ^{3}\right)^{1 / 3}=1+1 / 3 \tan ^{3}+1 / 3(1 / 3-1) / 2!\tan ^{6}+1 / 3(1 / 3-$ 1) $(1 / 3-2) / 3$! $\tan ^{9}+1 / 3(1 / 3-1)(1 / 3-2)(1 / 3-3) / 4$! $\tan ^{12} \ldots$ limit $\left(1+\tan ^{n}\right)^{1 / n}(99.97 \%)$ gets better with greater " n "

$n, 000$
$n=25$
$n=10$
$n=7$
$n=5$
$n=4$
$n=3$

$$
\mathrm{Z}_{\text {aprox }}=0.92549 / 0.8 * 72=83.294
$$

FORMA MUNDIS

Graphs for diferent＂ n ＂ and＂X＂values for Newton Binomial of fraction potencies：
$\left(1+\tan ^{3}\right)^{1 / 3}=1+1 / 3 \boldsymbol{t a n}^{3 \times 1}+$ $1 / 3(1 / 3-1) / 2!\tan ^{3 \times 2}+1 / 3(1 / 3-$ 1）$(1 / 3-2) / 3!\tan ^{3 \times 3}+1 / 3(1 / 3-$
1）（ $1 / 3-2$ ）（ $1 / 3-3$ ）／ 4 ！ $\tan ^{3 \times 4}$ ．
This series gets infinite componentes and converges
to a limit of $\left(1+\tan ^{n}\right)^{1 / n}$ and examples of convergence with few components that gets better with greater＂ n ＂and＂ X ＂

Newton Binomial with $x=(\overline{0}-\mathbf{8}$, land roots of $n:=(\overline{3} ; 4 ; 5 ; 6 ; 7 ; 10 ; 20$

Newton Binomial with $x=0.9$ ，and roots of $n:=3 ; 4 ; 5 ; 6 ; 7 ; 10 ; 20$
31.03651894
41.01348048
51.00527376
$6 \quad 1.00213959$
71.0008906
101.00007099
$20 \quad 1.00000003$

Complement of Quantum Qubits. In this graph you can see a multiplicity of results that appears when you define a position and a scale, managing to multiply the interpretations of phases and probabilities.

This Forma is a analog quantum computer where circles "knows all" and yields lightning results of all relations the moment the line crosses the circles, and maybe apply to Shor and Grover algorithms.

Goldbach (approach)

Work in progress

Some dsitibutions for diferente values of A as a \% of X.

$$
A=20 \% \text { de } X
$$

1.5

$A=50 \%$ de X

$A=100 \%$ de X

Ellipticals: $Y^{2}-X^{3}=A X+B$

$A=2,000 \%$ de X

0
1.5

```
    Ellipticals: Y}\mp@subsup{Y}{}{2}-\mp@subsup{X}{}{3}=AX+
```

$\frac{X, Y}{}$
Para $X^{2}=Y^{3}$
$X=0.754877$...
$Y=0.655865$...
$\mathrm{Y} / \mathrm{X}=0.868836 \ldots$

The space solution is made by rotating the plane figure on its vertical axis. It is essentially a toroidal shape inside a sphere... (with ears).

Some authors such as Johan Van Manen, CW Leadbeater, Jacob Boehme, PD Ouspensky, N Oumoff have made various comments about the higher dimensions of space, generalizing this idea as "the representation of a ring or a balloon,
product of a four-dimensional conception of space that emerges from the perception of density", whose image recalls this elementary mathematics form.

Thank you for your attention and congratulations for a few minutes well spent

Find in YouTube: "Forma Mundis Plus"
Google: https://drive.google.com/file/d/1eypAr3BFJv sGw2o662LYuHA-ICcQvhx/view?usp=share link

Jesus begins to write something on the ground using his finger; when the woman's accusers continue their challenge, he states that the one who is without sin is the one who should cast the first stone at her.

Please keep drawing circles and lines in the sand.

